Regenerative capacity of augmented bone in rat calvarial guided bone augmentation model
نویسندگان
چکیده
PURPOSE Guided bone regeneration (GBR) is the most widely used technique to regenerate and augment bones. Even though augmented bones (ABs) have been examined histologically in many studies, few studies have been conducted to examine the biological potential of these bones and the healing dynamics following their use. Moreover, whether the bone obtained from the GBR procedure possesses the same functions as the existing autogenous bone is uncertain. In particular, little attention has been paid to the regenerative ability of GBR bone. Therefore, the present study histologically evaluated the regenerative capacity of AB in the occlusive space of a rat guided bone augmentation (GBA) model. METHODS The calvaria of 30 rats were exposed, and plastic caps were placed on the right of the calvaria in 10 of the 30 rats. After a 12-week healing phase, critical-sized calvarial bone defects (diameter: 5.0 mm) were trephined into the dorsal parietal bone on the left of the calvaria. Bone particles were harvested from the AB or the cortical bone (CB) using a bone scraper and transplanted into the critical defects. RESULTS The newly generated bone at the defects' edge was evaluated using micro-computed tomography (micro-CT) and histological sections. In the micro-CT analysis, the radiopacity in both the augmented and the CB groups remained high throughout the observational period. In the histological analysis, the closure rate of the CB was significantly higher than in the AB group. The numbers of cells positive for runt-related transcription factor 2 (Runx2) and tartrate-resistant acid phosphatase (TRAP) in the AB group were larger than in the CB group. CONCLUSIONS The regenerative capacity of AB in the occlusive space of the rat GBA model was confirmed. Within the limitations of this study, the regenerative ability of the AB particulate transplant was inferior to that of the CB particulate transplant.
منابع مشابه
Sutures Possess Strong Regenerative Capacity for Calvarial Bone Injury.
Repair of calvarial bony defects remains challenging for craniofacial surgeons. Injury experiments on animal calvarial bones are widely used to study healing mechanisms and test tissue engineering approaches. Previously, we identified Gli1+ cells within the calvarial sutures as stem cells supporting calvarial bone turnover and injury repair. In this study, we tested the regenerative capacity of...
متن کاملGuided bone regeneration: A literature review
Guided bone regeneration (GBR) is a reconstructive procedure of alveolar ridge using membranes. This procedure is indicated when there is no sufficient bone for implantation, or in the case of optimal implant installation for esthetic or functional needs. GBR can be performed before implant placement, when there is not enough bone for initial stability of implants and less predictable outcomes ...
متن کاملBiotherapeutic Effect of Gingival Stem Cells Conditioned Medium in Bone Tissue Restoration
Bone tissue engineering is one of the main branches of regenerative medicine. In this field, the use of a scaffold, which supported bone development, in combination with mesenchymal stem cells (MSCs), has promised better outcomes for bone regeneration. In particular, human gingival mesenchymal stem cells (hGMSCs) may present advantages compared to other MSCs, including the easier isolation. How...
متن کاملResonance frequency analysis of implant stability in augmented and non-augmented sinus sites
Background and aim: Although there have been substantial developments in dental implant therapies, achieving good implant stability (ISQ >60) for implants inserted in augmented sinus sites appears to be challenging in comparison with non-augmented sites due to the high prevalence of bone resorption in posterior regions of maxilla. This study aimed to evaluate and compare the time required to a...
متن کاملLifenet Health Readigraft® Blx Dbm Putty versus Autograft in a Critical Sized Calvarial Defect Study
Materials and Methods: An 8 mm calvarial defect was created in the athymic rat and filled with either the test article (BLX Putty) or autograft. This model is a well-established and validated model for testing the osteoregenerative capacity of bone substitutes wherein an 8 mm defect in the rat calvaria will not spontaneously heal without treatment. The test article was provided in ready-touse a...
متن کامل